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A class of conflict-controlled processes [l-3] with additional (“phase” type) restrictions on the state of 

the evader is considered. A similar unrestricted problem was considered in [4]. Unlike [5, 61 the 

boundary of the “phase” restrictions is not a “death line” for the evader. Sufficient cooditioos for the 

solvability of the pursuit and evasion problems are obtained, which complement a range of well-known 

results [5-lo].* 

1. THE MOTION of a conflict-controlled object z = (zl, . . . , z,,) in the finite-dimensional space R’ 
is described by a system of differential equations of the form 

Here 4 is a specified square matrix of order n,, Ui and V are non-empty compact subsets of 
the spaces R”+ and R”, respectively, and the function cpi : U, x V + R’+ is continuous in all its 
variables. Here and henceforth i = 1,2,. . . , n; j= 1,2,. . . , r. 

The terminal set M consists of sets Mi each of which can be represented in the form 

Mi=iU~ +$ (1.2) 

where M,! is a linear subspace of the space R4, and Mf is a compact convexset contained in Li, 
the orthogonal complement to A4,? in R”‘. This conflict-controlled process describes a 
differential game between a group of pursuers 4, . . . , P, and an evader E. . 

We shall assume that a linear subspace L of the space R” is specified, together with a system 
of the form 

j=Ay+u, y(O)=yO, uev (1.3) 

and the set 

where A is a specified square matrix of order m, y” E D is a given vector, pl, . . . , p, are unit 
vectors, rc : R” + L is the orthogonal projection operator, and l.tl, . . . , p, are real numbers such 
that Int D + 0. 

fPrikl. Mat. Mekh. Vol. 57, No. 6, pp. 6168.1993. 
*See also: PETROV N. N., Simple pursuit in the presence of phase restrictions. Leningrad, 1984. Deposited in VINITI 
27.3.84, No. 1682-M 
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Let T > 0 be an arbitrary number and let o be a finite decomposition 0 = to < tI c . . . c t, c 
t r+t = T of the interval [0, T]. 

Definition 1. A piecewise-programmed strategy Q for the evader E specified in [0, T] with 
respect to the decomposition o is a family of mappings b’, e = 0, 1, . . . , s each of which maps 
the quantities 

to a measurable function u,(t) defined on t l [t,, t,l) and such that v,(t) EV, y(t) E D, 
t E [t,, t,+,). 

Definition 2. A piecewise-programmed counterstrategy Qi for the player 4 with respect to the 
decomposition o is a family of mappings c,F, e = 0, 1, . . , s each of which maps the quantities 
(1.5) and the control u,(t), t l [t,, t,J into the measurable function u:(t) defined for t ~[t,, tel) 
and such that u:(t) E Ui,t c [t,, t,J. 

We denote the given game by r = r(.z’, D). 

Definition 3. We shall say that a capture occurs in the game r if a T > 0 exists, and for any 
decomposition o of the interval [0, T] for any strategy Q of player E with respect to the 
decomposition o piecewise-programmed counterstrategies Qi exist for the players 4 with 
respect to the decompositions o such that there is an instant z E [0, T] and a number g for which 
z&I E M,* 

Definition 4. We say that capture is avoided in the game r if for any T > 0 a decomposition of 
cr of the interval [0, ZJ exists, and a strategy Q for the player E with respect to the decomposition 
o such that for all counterstrategies Qi of the players e we have z,(t) G Mi, tc [0, T]. 

2. We will now describe the pursuit scheme. We will denote by rci the orthogonal projection 
from R”’ on to Lt. 

Condition 1. For the point z” = (z,“, . . . , <) such that rr,exp(t4.)z,” P Mf for t 30 the 
following relations hold 

(2.1) 

for all O=sZGtc+=, u E V. 
Suppose Condition 1 is satisfied for the point z”. We consider the functions 

ai(t, 2, u) = max( al 01 3 0, -a(K,eXp(tAi)zq - Mf) n 

n Kiexp((t - Z)Ai)qi(Ui, U) f 0, 0 4 T G t < +m, u E V) 

Put 

Q(r) = (u(.)l IX [O, r] + V, y(z) E D, z E [O, rl I 

Condition 2. A time To exists such that 

(2.2) 

Theorem 1. Suppose that the point z” = (z,“, . . . , zi) is such that Conditions 1 and 2 are 
satisfied. Then capture occurs in the game P no later than the time To. 

The proof is similar to me proof of the theorem in [7, p. 951. 
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Condition 3. p, Ilp II= 1, p E R’ exist such that for the set Q = {y I y E R”, (p, ICY) G cl) we have 
0~14. 

We put 

d = max(llull I u E V}, I(g) = { 1, 2 ,..., n + g) 

%+dh 2, u) = (xexp((t - z)A)u, p) 

Condition 4. Continuous functions a:(t, u), p(t, u) and continuous non-negative functions 
g,(t, II), g(t, 2) exist such that 

oi(t, 2, u) = gi(t* r)&t, u), o,+f(t, 7, u) = g(r, M(r, u) 

Let 

Condition 5. Constants a, c,, c,, c, exist such that 
1. ap.“O, IIxexp(tA)yOIlcc, forall ta0; 
2. for any t > 0 a measurable set E(t) c [0, t] exists such that 

I@(t)) d 9. j g(t, Wz s c3, mingi(t,2)3 g(r,T)VTE[O,t] \ E(t) 
E(t) i 

3. the function s(t) is bounded in [0, +=) and satisfies one of the following two 
t++=: 

(a) f(t)Ei’(t) + += when a~ = 0, 
(b) (f(t)S(t) + + 00, when upc0. 

conditions as 

Theorem 2. Suppose that the point z” =(zF, . . . , zi) satisfies Conditions 1, 3, 4 and 5. Then 
capture occurs in the game r. 

Proof. Because D c 4, it is sufficient to prove the theorem for the game r, = r(z’, 4). 
Assume that the assertion of the theorem is false. Then for any T > 0 a strategy Q exists for 
player E (with respect to some decomposition CJ) such that for any counterstrategies Qi of 
players c we have Icjzi(t) L MF for all 0 6 t s T. By Condition 1 and the Filippov-Kasten lemma 
[ll] for any i measurable functions m,(z) E Mf, ui(z) E Vi, 0 G z d T, exist which for any fixed 
z E [0, T] are a solution of the equation 

*i(T, 7, U(r))(x~~xp(TAJr~ - mi(T)) = x,eXp((T - ‘C) Ai)qi(ui(z), X$‘S)) (2.3) 

At a time z we assume the value of the control ui(z) (defining the counterstrategy Qi) to be 
equal to the lexicographic minimum of all the points y for which equality (2.3) is satisfied. 

From Cauchy’s formula, (2.3) and Condition 4 we obtain 

xkzk CT) = x1 expW$ >z,” + 7 nk exp((T - @A, )(Pk(ur (21, u(‘F))dz = 
0 

=$eXp(%)zf 1-i g,(T,z)a:(T,u(T) 
0 I 

dz+i a:(T,u(~))g,(T,~)m,(2)dZ) (2.4 
0 
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Since the strategy Q is admissible, (p, rcy(t))~~~ for all t 20. From system (1.3) and 
Condition 4 it follows that 

Let T,(t), TY(t) be two subsets of the interval [0, t], such that 

Then 

Gl,2 = f g(hW~ 
‘4.~ (‘) 

From the last two relations it follows that 

We consider the functions 

(2.5) 

hi(t)= 1-j gi(t,Qaf(r,z,u(z))h 
0 

They are continuous, hi(O) = 1 and 

C h,(T)G n-&T) j mingi(CT)dr 
i q(T) ’ 

From Condition 5 and inequality (2.5) we obtain 

From part 3 of Condition 5 and inequality (2.6) it follows that a time T, and the number g 
exist such that the function Iz, vanishes at a time T = To. Hence we conclude from (2.4) that 
when T = To 

The resulting contradiction proves the theorem. 

Remark. Theorem 2 remains valid if part 3 of Condition 5 is replaced by the requirement that the right - 

hand side of inequality (2.6) vanishes for some T = To. 

3. Example 1. The pursuers and evader move according to the equations 

pi =aXi +Uip IlUiIW 1, Xi(O)=XF, XiERm 
, 

j=uy+u, llullal, y(O)=y’, yeRm, a<0 

The set M, consists of those points (x,, y J, for which x, = y. The restrictions on the evader’s coordinates 
are 
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Assertion 1 [lo]. Let zp = _xp - y” f 0, n 3 m, 0 E Intco{zi, . . . , zi, A, . . . , p,). Then there is a capture in 

game I. 

Assertion 2 [lo]. Let zf z 0 and 0 E Intco[z,“, . . . , z,f, pl, . . . , p,). Then capture is avoided in game I’. 

Example 2 (the Pontryagin control example with equal coefficients of friction). The motion of the 

pursuers and evader is described by the equations 

i,i = X2jr i2i = UX2i +Ui* Xti,Xzi ERM, Wl22. llUillcl 

A ‘Y29 j2 =4y2+0, y,,y2 ERrn, IlUll~l. a<0 

The set M, consists of the pairs [xU, y ), such that x, = y. Restrictions on the evader’s geometrical 
coordinates y, have the form 

D = tyll YI E It’“. tijnyl) d Pj) 

We put 

Zti=Xti-yr* Z7JZX2i-y2* e(f)=&exp(ur)-1) 

i$(r, z$ = zyi + e(t)zi 

Then 

ai(I,‘F.‘U)=e(t-~)a,!(Si(t,~P),U), a,+j(t,~,0)=e(t_r),(Pj,u)a,!(5i,u)= 

~ll~~ll~2((~~~U)+[(~~~U)2+ll~~l12(l~llUl12)]~) 

gi(t,r)=g(t,7)=e(t-r), f(t)= j e(r-7)&, E(t)=0 
0 

We put 

Zt =Z~-ZZOila= lilll&(t,Zf) 
t-b- 

Assertion 3. Let z,’ # 0, 0 E Intcojz:, . . . , z.*, pl, . . . , p,] and n 3 m. Then there is capture in game I’. 
Examples 1 and 2 are solutions of the “cornered rat” and “lion and man” problems [12] in the given 

formulation. 

4. Let us consider in more detail the conflict-controlled process (l.l)-(1.3) for the case when 
Ai and A are null square matrices. Then the conflict-controlled process is of the simple motion 
type with mixed player controls and is described by the system of differential equations 

h=~i(Uie~), ZiER”‘, t.+~Ui, IJEV, p(())=z~ (4.1) 

Here Ui and V are non-empty compact subsets of the spaces Rq and R", respectively, and 
the function cp,(u,, U) is continuous in its variables. The terminal set M consist of sets Mi each of 
which is represented in the form (1.2). 

The restrictions on the evader have the form 
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j=u, PER”, REV, y(O)=y’ 
(4.2) 

D = Iyl y E Rm, bjs Icy) d PjI 

and x : Rm + L is the orthogonal projection operator on to the linear subspace L c R”. 
We form the multivalued mappings 

Condition 6. The point z” = (z,“, . . . , zl) E R’ \ M satisfies the relations q(zp, U) f $ for all 
UEV. 

Condition 7. The point z” = (zf, . . . , zi) satisfies the relations F(zp U) # 0 for all 2) E V. 
We fix a point z” that satisfies Conditions 6 (respectively 7) and introduce the functions 

ai(ll) = max( 4 a 2 0, -(x(lCiZ~ - Mf) n 7C#i(Ui, U) * 0 

$(u) = max{al a a 0, -a(lrizp-Miz)nCOnicpi(Ui,U)#O 

(4.3) 

(4.4) 

We put 

V* = (Ul ai = 0, i = 1, 2 ,..., n) 

Theorem 3. Suppose the point z” = (z,“, . . . , zz) satisfies Condition 6, 6 > Oand at least one of 
the following two conditions holds: (a) r = 1, (b) 0 c COV,, COV, c conV,. 

Then there is a capture in the game I. 

Proof. If Condition (a) of the theorem is satisfied, Conditions 1 and 3-5 of Theorem 2 are 
satisfied, from which the assertio ows. Suppose Condition (b) of the theorem is satisfied. 
Then maxi@,, xu)>O for all Z)E COV,. Hence by the Bonneblast-Karlin-Shepley theorem [13, 
p*33] Yj"O9 Yl+ . - - +y, = 1 exist such that 

Putting 

p = YlPl + -*a + ‘YrP,, p = Wl + *** + wr 

4 = (9 Y E Rm, (P, XY) d PL) 

we obtain D c 4, inf,, max,,(,, a,(u) > 0, where a,+l(z)) = (p, m). This proves the theorem. 

Theorem 4. Suppose the point z” = (z,“, . . . , zi) satisfies Condition 7, 6, < 0,and a vector 
u, E V, exists such that 

Then capture is avoided in the game r. 
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The proof of the theorem is similar to that of Theorem 3 in [4]. 

ExutnpZe 1 (see the paper cited in the footnote). Let n = m, ML = {O}, q&, u) = u, - 2), U, = V = Dl(0). In 

this case al(x))=0 if and only if Ilull= 1 and (zf, u)<O. If n 2 m, then one can take the vectors 
0 

q,..., ,$, to be linearly independent and then, if 6 > 0 Condition (b) of Theorem 3 is satisfied. We find 
that there is capture in the game r if n 5 m and 

0 
0 E Intco(r~ ,..., Z”,Pl,..., Prl 

Example 2 [9]. Let n, = m, cp,(u,, u) = u, -II, M, = {O], U, = V =4(O), where D is a polyhedron. In this 
case, it follows from Theorems 3 and 4 that if n 2 m, then there is capture in the game r. 
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