QUASILINEAR CONFLICT-CONTROLLED PROCESSES WITH ADDITIONAL RESTRICTIONS \dagger

N. N. Petrov
Izhevsk

(Received 22 June 1992)

Abstract

A class of conflict-controlled processes [1-3] with additional ("phase" type) restrictions on the state of the evader is considered. A similar unrestricted problem was considered in [4]. Unlike [5, 6] the boundary of the "phase" restrictions is not a "death line" for the evader. Sufficient conditions for the solvability of the pursuit and evasion problems are obtained, which complement a range of well-known results [5-10]. ${ }^{\ddagger}$

1. The motion of a conflict-controlled object $z=\left(z_{1}, \ldots, z_{n}\right)$ in the finite-dimensional space R^{v} is described by a system of differential equations of the form

$$
\begin{align*}
& \dot{z}_{i}=A_{i} z_{i}+\varphi_{i}\left(u_{i}, v\right), \quad z_{i}(0)=z_{i}^{0} \tag{1.1}\\
& z_{i} \in R^{m_{i}}, \quad u_{i} \in U_{i}, \quad v \in V
\end{align*}
$$

Here A_{i} is a specified square matrix of order n_{i}, U_{i} and V are non-empty compact subsets of the spaces $R^{m_{i}}$ and R^{m}, respectively, and the function $\varphi_{i}: U_{i} \times V \rightarrow R^{m_{i}}$ is continuous in all its variables. Here and henceforth $i=1,2, \ldots, n ; j=1,2, \ldots, r$.

The terminal set M consists of sets M_{i} each of which can be represented in the form

$$
\begin{equation*}
M_{i}=M_{i}^{1}+M_{i}^{2} \tag{1.2}
\end{equation*}
$$

where M_{i}^{1} is a linear subspace of the space $R^{n_{1}}$, and M_{i}^{2} is a compact convex set contained in L_{i}^{1}, the orthogonal complement to M_{i}^{1} in $R^{n_{1}}$. This conflict-controlled process describes a differential game between a group of pursuers P_{1}, \ldots, P_{n} and an evader E.

We shall assume that a linear subspace L of the space R^{m} is specified, together with a system of the form

$$
\begin{equation*}
\dot{y}=A y+v, \quad y(0)=y^{0}, \quad v \in V \tag{1.3}
\end{equation*}
$$

and the set

$$
\begin{equation*}
D=\left\{y \mid y \in R^{m},\left\langle p_{j} ; \pi y\right\rangle \leqslant \mu_{j}\right\} \tag{1.4}
\end{equation*}
$$

where A is a specified square matrix of order $m, y^{0} \in D$ is a given vector, p_{1}, \ldots, p_{r} are unit vectors, $\pi: R^{m} \rightarrow L$ is the orthogonal projection operator, and μ_{1}, \ldots, μ_{r} are real numbers such that Int $D \neq \varnothing$.

[^0]Let $T>0$ be an arbitrary number and let σ be a finite decomposition $0=t_{0}<t_{1}<\cdots<t_{\mathrm{s}}<$ $t_{s+1}=T$ of the interval $[0, T]$.

Definition 1. A piecewise-programmed strategy Q for the evader E specified in $[0, T]$ with respect to the decomposition σ is a family of mappings $b^{e}, e=0,1, \ldots, s$ each of which maps the quantities

$$
\begin{equation*}
\left(t_{e}, z_{1}\left(t_{e}\right), \ldots, z_{n}\left(t_{e}\right), y\left(t_{e}\right)\right) \tag{1.5}
\end{equation*}
$$

to a measurable function $v_{e}(t)$ defined on $t \in\left[t_{e}, t_{e+1}\right)$ and such that $v_{e}(t) \in V, y(t) \in D$, $t \in\left[t_{e}, t_{e+1}\right)$.

Definition 2. A piecewise-programmed counterstrategy Q_{i} for the player P_{i} with respect to the decomposition σ is a family of mappings $c_{i}^{e}, e=0,1, \ldots, s$ each of which maps the quantities (1.5) and the control $v_{e}(t), t \in\left[t_{e}, t_{e+1}\right)$ into the measurable function $u_{e}^{i}(t)$ defined for $t \in\left[t_{e}, t_{e+1}\right)$ and such that $u_{l}^{e}(t) \in U_{i}, t \in\left[t_{e}, t_{c+1}\right)$.

We denote the given game by $\Gamma=\Gamma\left(z^{0}, D\right)$.
Definition 3. We shall say that a capture occurs in the game Γ if a $T>0$ exists, and for any decomposition σ of the interval $[0, T]$ for any strategy Q of player E with respect to the decomposition σ piecewise-programmed counterstrategies Q_{i} exist for the players P_{i} with respect to the decompositions σ such that there is an instant $\tau \in[0, T]$ and a number g for which $z_{g}(\tau) \in M_{g}$.

Definition 4. We say that capture is avoided in the game Γ if for any $T>0$ a decomposition of σ of the interval $[0, T]$ exists, and a strategy Q for the player E with respect to the decomposition σ such that for all counterstrategies Q_{i} of the players P_{i} we have $z_{i}(t) \notin M_{i}, t \in[0, T]$.
2. We will now describe the pursuit scheme. We will denote by π_{i} the orthogonal projection from $R^{n_{1}}$ on to L_{i}^{1}.

Condition 1. For the point $z^{0}=\left(z_{1}^{0}, \ldots, z_{0}^{n}\right)$ such that $\pi_{i} \exp \left(t A_{i}\right) z_{1}^{0} \notin M_{1}^{2}$ for $t \geqslant 0$ the following relations hold

$$
\begin{equation*}
-\overline{\operatorname{con}}\left(\pi_{i} \exp \left(t A_{i}\right) z_{i}^{0}-M_{i}^{2}\right) \cap \pi_{i} \exp \left((t-\tau) A_{i}\right) \varphi_{i}\left(U_{i}, v\right) \neq \varnothing \tag{2.1}
\end{equation*}
$$

for all $0 \leqslant \tau \leqslant t<+\infty, v \in V$.
Suppose Condition 1 is satisfied for the point z^{0}. We consider the functions

$$
\begin{align*}
& \alpha_{i}(t, \tau, v)=\max \left\{\alpha \mid \alpha \geqslant 0,-\alpha\left(\pi_{i} \exp \left(t A_{i}\right) z_{i}^{0}-M_{i}^{2}\right) \cap\right. \\
& \left.\cap \pi_{i} \exp \left((t-\tau) A_{i}\right) \varphi_{i}\left(U_{i}, v\right) \neq \varnothing, 0 \leqslant \tau \leqslant t<+\infty, v \in V\right\} \tag{2.2}
\end{align*}
$$

Put

$$
\Omega(t)=\{v(\cdot) \mid v:[0, t] \rightarrow V, y(\tau) \in D, \tau \in[0, t]\}
$$

Condition 2. A time T_{0} exists such that

$$
\inf _{v(\cdot) \in \Omega\left(T_{0}\right)} \max _{i} \int_{0}^{T_{0}} \alpha_{i}\left(T_{0}, \tau, v(\tau)\right) d \tau \geqslant 1
$$

Theorem 1. Suppose that the point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ is such that Conditions 1 and 2 are satisfied. Then capture occurs in the game Γ no later than the time T_{0}.

The proof is similar to me proof of the theorem in [7, p. 95].

Condition 3. $p,\|p\|=1, \mu \in R^{1}$ exist such that for the set $D_{1}=\left\{y \mid y \in R^{m},\langle p, \pi y\rangle \leqslant \mu\right\}$ we have $D \subset D_{1}$.

We put

$$
\begin{aligned}
& d=\max \{\|v\| \mid v \in V\}, \quad I(g)=\{1,2, \ldots, n+g\} \\
& \alpha_{n+1}(t, \tau, v)=\langle\pi \exp ((t-\tau) A) v, p\rangle
\end{aligned}
$$

Condition 4. Continuous functions $\alpha_{i}^{1}(t, v), \beta(t, v)$ and continuous non-negative functions $g_{i}(t, \tau), g(t, \tau)$ exist such that

$$
\alpha_{i}(t, \tau, v)=g_{i}(t, \tau) \alpha_{i}^{1}(t, v), \quad \alpha_{n+1}(t, \tau, v)=g(t, \tau) \beta(t, v)
$$

Let

$$
\begin{array}{ll}
\alpha_{n+1}^{1}(t, v)=\beta(t, v)+a \mu, & f(t)=\int_{0}^{t} g(t, \tau) d \tau \\
\delta(t)=\min _{v \in V} \max _{e \in I(1)} \alpha_{e}^{1}(t, v), & R(t)=d+\delta(t)-a \mu
\end{array}
$$

Condition 5. Constants a, c_{1}, c_{2}, c_{3} exist such that

1. $a \mu \leqslant 0,\left\|\pi \exp (t A) y^{0}\right\| \leqslant c_{1}$ for all $t \geqslant 0$;
2. for any $t>0$ a measurable set $E(t) \subset[0, t]$ exists such that

$$
\mu(E(t)) \leqslant c_{2}, \quad \int_{E(t)} g(t, \tau) d \tau \leqslant c_{3}, \quad \min _{i} g_{i}(t, \tau) \geqslant g(t, \tau) \forall \tau \in[0, t] \backslash E(t)
$$

3. the function $\delta(t)$ is bounded in $[0,+\infty)$ and satisfies one of the following two conditions as $t \rightarrow+\infty$:
(a) $f(t) \delta^{2}(t) \rightarrow+\infty$ when $a \mu=0$,
(b) $(f(t) \delta(t) \rightarrow+\infty$, when $a \mu<0$.

Theorem 2. Suppose that the point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ satisfies Conditions 1, 3, 4 and 5 . Then capture occurs in the game Γ.

Proof. Because $D \subset D_{1}$, it is sufficient to prove the theorem for the game $\Gamma_{1}=\Gamma\left(z^{0}, D_{1}\right)$. Assume that the assertion of the theorem is falsc. Then for any $T>0$ a strategy Q exists for player E (with respect to some decomposition σ) such that for any counterstrategies Q_{i} of players P_{i} we have $\pi_{i} z_{i}(t) \notin M_{i}^{2}$ for all $0 \leqslant t \leqslant T$. By Condition 1 and the Filippov-Kasten lemma [11] for any i measurable functions $m_{i}(\tau) \in M_{i}^{2}, u_{i}(\tau) \in U_{i}, 0 \leqslant \tau \leqslant T$, exist which for any fixed $\tau \in[0, T]$ are a solution of the equation

$$
\begin{equation*}
-\alpha_{i}(T, \tau, v(\tau))\left(\pi_{i} \exp \left(T A_{i}\right) z_{i}^{0}-m_{i}(\tau)\right)=\pi_{i} \exp \left((T-\tau) A_{i}\right) \varphi_{i}\left(u_{i}(\tau), v(\tau)\right) \tag{2.3}
\end{equation*}
$$

At a time τ we assume the value of the control $u_{i}(\tau)$ (defining the counterstrategy Q_{i}) to be equal to the lexicographic minimum of all the points u_{i} for which equality (2.3) is satisfied.

From Cauchy's formula, (2.3) and Condition 4 we obtain

$$
\begin{align*}
& \pi_{k} z_{k}(T)=\pi_{k} \exp \left(T A_{k}\right) z_{k}^{0}+\int_{0}^{T} \pi_{k} \exp \left((T-\tau) A_{k}\right) \varphi_{k}\left(u_{k}(\tau), v(\tau)\right) d \tau= \\
& =\pi_{k} \exp \left(T A_{k}\right) z_{k}^{0}\left(1-\int_{0}^{T} g_{k}(T, \tau) \alpha_{k}^{1}(T, v(\tau)) d \tau+\int_{0}^{T} \alpha_{k}^{1}(T, v(\tau)) g_{k}(T, \tau) m_{k}(\tau) d \tau\right) \tag{2.4}
\end{align*}
$$

Since the strategy Q is admissible, $\langle p, \pi y(t)\rangle \leqslant \mu$ for all $t \geqslant 0$. From system (1.3) and Condition 4 it follows that

$$
\int_{0}^{1} g(t, \tau) \beta(t, v(\tau)) d \tau \leqslant \mu-\left\langle p, \pi \exp (t A) y^{0}\right\rangle=\mu_{1}(t)
$$

Let $T_{1}(t), T_{2}(t)$ be two subsets of the interval $[0, t]$, such that

$$
\begin{aligned}
& T_{1}(t)=\{\tau \mid \tau \in[0, t], \beta(t, v(\tau))<\delta(t)-a \mu\} \\
& T_{2}(t)=\{\tau \mid \tau \in[0, t], \beta(t, v(\tau)) \leqslant \delta(t)-a \mu\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& (\delta(t)-a \mu) G_{2}-d G_{1} \leqslant \mu_{1}(t), G_{2}+G_{1}=f(t) \\
& \left(G_{1,2}=\int_{T_{1,2}(t)} g(t, \tau) d \tau\right)
\end{aligned}
$$

From the last two relations it follows that

$$
\begin{equation*}
G_{1} \geqslant\left[f(t)(\delta(t)-a \mu)-\mu_{1}(t)\right] / R(t) \tag{2.5}
\end{equation*}
$$

We consider the functions

$$
h_{i}(t)=1-\int_{0}^{t} g_{i}(t, \tau) \alpha_{i}^{1}(t, \tau, v(\tau)) d \tau
$$

They are continuous, $h_{i}(0)=1$ and

$$
\sum_{i} h_{i}(T) \leqslant n-\delta(T) \int_{T_{1}(T)} \min _{i} g_{i}(t, \tau) d \tau
$$

From Condition 5 and inequality (2.5) we obtain

$$
\begin{equation*}
\sum_{i} h_{i}(T) \leqslant n+c_{3} \delta(T)-\delta(T)\left[f(T)(\delta(T)-a \mu)-\mu_{1}(T)\right] / R(T) \tag{2.6}
\end{equation*}
$$

From part 3 of Condition 5 and inequality (2.6) it follows that a time T_{0} and the number g exist such that the function h_{g} vanishes at a time $T=T_{0}$. Hence we conclude from (2.4) that when $T=T_{0}$

$$
\pi_{g} z_{g}\left(T_{0}\right)=\int_{0}^{T_{0}} g_{g}\left(T_{0}, \tau\right) \alpha_{g}^{1}\left(T_{0}, v(\tau)\right) m_{g}(v(\tau)) d \tau \in M_{g}^{2}
$$

The resulting contradiction proves the theorem.
Remark. Theorem 2 remains valid if part 3 of Condition 5 is replaced by the requirement that the righthand side of inequality (2.6) vanishes for some $T=T_{0}$.
3. Example 1. The pursuers and evader move according to the equations

$$
\begin{aligned}
& \dot{x}_{i}=a x_{i}+u_{i}, \quad\left\|u_{i}\right\| \leqslant 1, \quad x_{i}(0)=x_{i}^{0}, \quad x_{i} \in R^{m}, \\
& \dot{y}=a y+v, \quad\|v\| \leqslant 1, \quad y(0)=y^{0}, \quad y \in R^{m}, \quad a<0
\end{aligned}
$$

The set M_{i} consists of those points $\left\{x_{i}, y\right\}$, for which $x_{i}=y$. The restrictions on the evader's coordinates are

$$
D=\left\{y \mid y \in R^{m},\left\langle p_{j}, y\right\rangle \leqslant 0\right\}
$$

Assertion $1[10]$. Let $z_{i}^{0}=x_{i}^{0}-y^{0} \neq 0, n \geqslant m, 0 \in \operatorname{Intco}\left\{z_{1}^{0}, \ldots, z_{n}^{0}, p_{1}, \ldots, p_{r}\right]$. Then there is a capture in game Γ.

Assertion $2[10]$. Let $z_{1}^{0} \neq 0$ and $0 \in \operatorname{Intco}\left(z_{1}^{0}, \ldots, z_{n}^{0}, p_{1}, \ldots, p_{r}\right)$. Then capture is avoided in game Γ.
Example 2 (the Pontryagin control example with equal coefficients of friction). The motion of the pursuers and evader is described by the equations

$$
\begin{aligned}
& \dot{x}_{1 i}=x_{2 i}, \quad \dot{x}_{2 i}=a x_{2 i}+u_{i}, \quad x_{1 i}, x_{2 i} \in R^{m}, \quad m \geqslant 2, \quad\left\|u_{i}\right\| \leqslant 1 \\
& \dot{y}_{1}=y_{2}, \quad \dot{y}_{2}=a y_{2}+v, \quad y_{1}, y_{2} \in R^{m}, \quad\|v\| \leqslant 1, \quad a<0
\end{aligned}
$$

The set M_{i} consists of the pairs $\left\{x_{1 i}, y\right\}$, such that $x_{1 i}=y$. Restrictions on the evader's geometrical coordinates y_{1} have the form

$$
D=\left\{y_{1} \mid y_{1} \in R^{m},\left\langle p_{j}, y_{1}\right\rangle \leqslant \mu_{j}\right\}
$$

We put

$$
\begin{aligned}
& z_{1 i}=x_{1 i}-y_{1}, \quad z_{2 i}=x_{2 i}-y_{2}, \quad e(t)=a^{-1}(\exp (a t)-1) \\
& \xi_{t}\left(t, z_{i}^{0}\right)=z_{1 i}^{0}+e(t) z_{2 i}^{0}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \alpha_{i}(t, \tau, v)=e(t-\tau) \alpha_{i}^{1}\left(\xi_{i}\left(t, z_{i}^{0}\right), v\right), \quad \alpha_{n+j}(t, \tau, v)=e(t-\tau),\left\langle p_{j}, v\right\rangle \alpha_{i}^{1}\left(\xi_{i}, v\right)= \\
& =\left\|\xi_{i}\right\|^{-2}\left(\left\langle\xi_{i}, v\right\rangle+\left[\left\langle\xi_{i}, v\right\rangle^{2}+\left\|\xi_{i}\right\|^{2}\left(1-\|v\|^{2}\right)\right]^{1 / 2}\right) \\
& g_{i}(t, \tau)=g(t, \tau)=e(t-\tau), \quad f(t)=\int_{0}^{t} e(t-\tau) d \tau, \quad E(t)=\varnothing
\end{aligned}
$$

We put

$$
z_{i}^{*}=z_{1 i}^{0}-z_{2 i}^{0} \mid a=\lim _{t \rightarrow \infty} \xi_{i}\left(t, z_{i}^{0}\right)
$$

Assertion 3. Let $z_{i}^{*} \neq 0,0 \in \operatorname{Intco}\left\{z_{1}^{*}, \ldots, z_{n}^{*}, p_{1}, \ldots, p_{r}\right\}$ and $n \geqslant m$. Then there is capture in game Γ.
Examples 1 and 2 are solutions of the "cornered rat" and "lion and man" problems [12] in the given formulation.
4. Let us consider in more detail the conflict-controlled process (1.1)-(1.3) for the case when A_{i} and A are null square matrices. Then the conflict-controlled process is of the simple motion type with mixed player controls and is described by the system of differential equations

$$
\begin{equation*}
\dot{z}_{i}=\varphi_{i}\left(u_{i}, v\right), \quad z_{i} \in R^{n_{i}}, \quad u_{i} \in U_{i}, \quad v \in V, \quad z_{i}(0)=z_{i}^{0} \tag{4.1}
\end{equation*}
$$

Here U_{i} and V are non-empty compact subsets of the spaces R^{m} and R^{m}, respectively, and the function $\varphi_{i}\left(u_{i}, v\right)$ is continuous in its variables. The terminal set M consist of sets M_{i} each of which is represented in the form (1.2).
The restrictions on the evader have the form

$$
\begin{align*}
& \dot{y}=v, \quad y \in R^{m}, \quad v \in V, \quad y(0)=y^{0} \tag{4.2}\\
& D=\left\{y \mid \quad y \in R^{m},\left\langle p_{j}, \pi y\right\rangle \leqslant \mu_{j}\right\}
\end{align*}
$$

and $\pi: R^{m} \rightarrow L$ is the orthogonal projection operator on to the linear subspace $L \subset R^{m}$.
We form the multivalued mappings

$$
\begin{aligned}
& W_{i}\left(z_{i}^{0}, v\right)=-\overline{\operatorname{con}}\left(\pi_{i} z_{i}^{0}-M_{i}^{2}\right) \cap \pi_{i} \varphi_{i}\left(U_{i}, v\right) \\
& \overline{W_{i}}\left(z_{i}^{0}, v\right)=-\overline{\operatorname{con}}\left(\pi_{i} z_{i}^{0}-M_{i}^{2}\right) \cap \operatorname{co} \pi_{i} \varphi_{i}\left(U_{i}, v\right)
\end{aligned}
$$

Condition 6. The point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right) \in R^{v} \backslash M$ satisfies the relations $W_{i}\left(z_{i}^{0}, v\right) \neq \phi$ for all $v \in V$.
Condition 7. The point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ satisfies the relations $\overline{W_{i}}\left(z_{i}^{0} v\right) \neq \varnothing$ for all $v \in V$.
We fix a point z^{0} that satisfies Conditions 6 (respectively 7) and introduce the functions

$$
\begin{align*}
& \alpha_{i}(v)=\max \left\{\alpha \mid \alpha \geqslant 0,-\alpha\left(\pi_{i} z_{i}^{0}-M_{i}^{2}\right) \cap \pi_{i} \varphi_{i}\left(U_{i}, v\right) \neq \varnothing\right. \tag{4.3}\\
& \bar{\alpha}_{i}(v)=\max \left\{\alpha \mid \alpha \geqslant 0,-\alpha\left(\pi_{i} z_{i}^{0}-M_{i}^{2}\right) \cap \operatorname{co} \pi_{i} \varphi_{i}\left(U_{i}, v\right) \neq \varnothing\right. \tag{4.4}\\
& \alpha_{n+j}(v)=\bar{\alpha}_{n+j}(v)=\left\langle p_{j}, \pi v\right\rangle
\end{align*}
$$

We put

$$
\begin{aligned}
& \delta=\inf _{v} \max _{e \in I(r)} \alpha_{e}(v), \quad \delta_{1}=\inf _{v} \max _{e \in I(r)} \bar{\alpha}_{e}(v) \\
& V_{1}=\left\{v \mid \quad \alpha_{i}(v)=0, i=1,2, \ldots, n\right\}
\end{aligned}
$$

Theorem 3. Suppose the point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ satisfies Condition $6, \delta>0$ and at least one of the following two conditions holds: (a) $r=1$, (b) $0 \notin \overline{\operatorname{co} V_{1}}, \operatorname{co} V_{1} \subset \operatorname{con} V_{1}$.

Then there is a capture in the game Γ.
Proof. If Condition (a) of the theorem is satisfied, Conditions 1 and 3-5 of Theorem 2 are satisfied, from which the assertion follows. Suppose Condition (b) of the theorem is satisfied. Then $\max _{j}\left\langle p_{j}, \pi v\right\rangle>0$ for all $v \in \overline{\operatorname{coV}} V_{1}$. Hence by the Bonneblast-Karlin-Shepley theorem [13, p. 33] $\gamma_{j} \geqslant 0, \gamma_{1}+\cdots+\gamma_{r}=1$ exist such that

$$
\min _{v \in \operatorname{cov}_{1}} \sum_{j=1}^{r} \gamma_{j}\left\langle p_{j}, \pi v\right\rangle>0
$$

Putting

$$
\begin{aligned}
& p=\gamma_{1} p_{1}+\ldots+\gamma_{r} p_{r}, \quad \mu=\gamma_{1} \mu_{1}+\ldots+\gamma_{r} \mu_{r} \\
& D_{1}=\left\{y \mid y \in R^{m},\langle p, \pi y\rangle \leqslant \mu\right\}
\end{aligned}
$$

we obtain $D \subset D_{1}$, inf $_{v} \max _{e \in(1)} \alpha_{e}(v)>0$, where $\alpha_{n+1}(v)=\langle p, \pi v\rangle$. This proves the theorem.
Theorem 4. Suppose the point $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ satisfies Condition 7, $\delta_{1} \leqslant 0$, and a vector $v_{0} \in V$, exists such that

$$
\delta_{1}=\max _{e \in I(r)} \bar{\alpha}_{r}\left(v_{0}\right)
$$

Then capture is avoided in the game Γ.

The proof of the theorem is similar to that of Theorem 3 in [4].
Example 1 (see the paper cited in the footnote). Let $n=m, M_{i}=\{0\}, \varphi_{i}\left(u_{i}, v\right)=u_{i}-v, U_{i}=V=D_{1}(0)$. In this case $\alpha_{i}(v)=0$ if and only if $\|v\|=1$ and $\left\langle z_{i}^{0}, v\right\rangle \leqslant 0$. If $n \geqslant m$, then one can take the vectors $z_{1}^{0}, \ldots, z_{m}^{0}$ to be linearly independent and then, if $\delta>0$ Condition (b) of Theorem 3 is satisfied. We find that there is capture in the game Γ if $n \geqslant m$ and

$$
0 \in \operatorname{Intco}\left\{z_{1}^{0}, \ldots, z_{n}^{0}, p_{1}, \ldots, p_{r}\right\}
$$

Example 2 [9]. Let $n_{i}=m, \varphi_{i}\left(u_{i}, v\right)=u_{i}-v, M_{i}=\{0\}, U_{i}=V=D_{1}(0)$, where D is a polyhedron. In this case, it follows from Theorems 3 and 4 that if $n \geqslant m$, then there is capture in the game Γ.

REFERENCES

1. KRASOVSKII N. N. and SUBBOTIN A. I., Positional Differential Games. Nauka, Moscow, 1974.
2. SUBBOTIN A. I. and CHENTSOV A. G., Optimization of Guarantee in Control Problems. Nauka, Moscow, 1981.
3. PONTYRYAGIN L. S., Linear differential games of pursuit. Mat. Sbor. 112, 3, 307-330, 1980.
4. PROKOPOVICH P. V. and CHIRKII A. A., Quasilinear conflict-controlled processes with non-fixed time. Prikl. Mat. Mekh. 55, 1,63-71, 1991.
5. CHIKRII A. A., Group pursuit with bounded evader coordinates. Prikl. Mat. Mekh. 26, 6, 906-913, 1982.
6. CHIKRII A. A. and RAPPOPORT I. S., Group pursuit of controlled objects with different inertia. Dokl. Akad Nauk SSSR 321, 3, 486-490, 1991.
7. GRIGORENKO N. L., Mathematical Methods of Controlling Several Dynamical Processes. Izd. Mosk. Gos. Univ., Moscow, 1990.
8. PSHENICHNYI B. N., Simple pursuit by several objects. Kibernetika 3, 145-146, 1976.
9. IVANOV R. P., Simple pursuit-evasion on a compact set. Dokl. Akad. Nauk SSSR 254, 6, 1318-1321, 1980.
10. PETROV N. N., A problem of group pursuit with phase restrictions. In Non-linear Oscillations and Control Theory, pp. 24-33. Udmurt. Univ., Izhevsk, 1987.
11. VARGA, J., Optimal Control of Differential and Functional Equations. Nauka, Moscow, 1977.
12. ISAACS R., Differential Games. Mir, Moscow, 1967.
13. PARTKHASARATI T. and RAGKHAVAN T., Some Problems in the Theory of Two-person Games. Mir, Moscow, 1974.

[^0]: \dagger Prikl. Mat. Mekh. Vol. 57, No. 6, pp. 61-68, 1993.
 \ddagger See also: PETROV N. N., Simple pursuit in the presence of phase restrictions. Leningrad, 1984. Deposited in VINITI 27.3.84, No. 1682-84.

